BirZeit University
 Faculty of Science-Department of Physics
 Quantum Mechanics Phys635
 Spring 2016
 First Exam, Apr. 7th 2016

1. If \mathbf{A}, \mathbf{B} are Hermitian operators:
(a) Under what conditions $\mathbf{A B}$ is Hermitian
(b) Given that \mathbf{A} and \mathbf{B} are combatible operators show that $(A+B)^{n}$ is Hermitian, where n is a positive integer.
2. Vectors $\mid a>$ and $\mid b>$ belong to a certain abstract vector space such that:

$$
|a><a|+|b><b|=1
$$

(a) What is the dimension of the space
(b) Find $\operatorname{Tr}\left(e^{|a><a|}\right)$
(c) Find $\left[e^{|a\rangle<a \mid}, e^{|a\rangle<b \mid}\right]$
3. Consider The problem of one dimensional harmonic oscillator, where the Hamiltonian is give be:

$$
H=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right)
$$

and the time evolution operator to be:

$$
U(t, 0)=e^{-i H t / \hbar}
$$

(a) Consider the following operators:

$$
\begin{array}{r}
\tilde{a}(t)=U^{\dagger}(t, 0) a U(t, 0) \\
\tilde{a}^{\dagger}(t)=U^{\dagger}(t, 0) a^{\dagger} U(t, 0)
\end{array}
$$

By calculating their action on the base kets of the hamiltonian Find an expression of $\tilde{a}(t)$ and $\tilde{a}^{\dagger}(t)$ in terms of a and a^{\dagger}
(b) Show that the position and momentum operators at any time t can be written as:

$$
\begin{aligned}
\tilde{X}(t) & =U^{\dagger}(t, 0) X U(t, 0) \\
\tilde{P}(t) & =U^{\dagger}(t, 0) P U(t, 0)
\end{aligned}
$$

(c) Show that $\left.U^{\dagger}\left(\frac{2 \pi}{\omega}, 0\right) \right\rvert\, x>$ is an eigenket of P, and what is the eigenvalue
(d) Show that $\left.U^{\dagger}\left(\frac{2 \pi}{\omega}, 0\right) \right\rvert\, p>$ is an eigenket of X, and what is the eigenvalue
4. Three matrices M_{x}, M_{y}, M_{z}, each with 256 rows and columns, are known to obey the commutation rules $\left[M_{x}, M_{y}\right]=i M_{Z}$ (with cyclic permutations of x, y and z). The eigenvalues of the matrix M_{x} are ± 2, each once; $\pm 3 / 2$, each 8 times; ± 1, each 28 times; $\pm 1 / 2$, each 56 times; and 0,70 times. State the 256 eigenvalues of the matrix $M^{2}=M_{x}^{2}+M_{y}^{2}+M_{z}^{2}$.
5. Phase space is defined by the position and momentum. Show that:

$$
T\left(x_{0}, p_{0}\right)=e^{\frac{i\left(X_{p_{0}}-P x_{0}\right)}{\hbar}}
$$

is a translation operator in phase space
6. The coherent states are defined to be an eigenvector of the annihilation operator in simple harmonic oscillator.

$$
a|\alpha>=\alpha| \alpha>
$$

α is in general a complex number
(a) Show that $\mid \alpha>$ can be written as:

$$
\left|\alpha>=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}\right| n>
$$

(b) Show that

$$
|\alpha, t>=U(t, 0)| \alpha>=\mid \alpha e^{-i \omega t}>e^{-i \omega t / 2}
$$

ω is the angular frequency of the harmonic oscillator
(c) Calculate

$$
\begin{aligned}
& <\alpha|X(t)| \alpha> \\
& <\alpha|P(t)| \alpha>
\end{aligned}
$$

7. A particle of mass m is allowed to move only along the circle of radius R on a plane, $x=R \cos \theta, y=R \sin \theta$
(a) Show that the Lagrangian is

$$
L=\frac{m}{2} R^{2} \dot{\theta}^{2}
$$

(b) Show that the Hamiltonian is:

$$
H=\frac{1}{2 m R^{2}} P_{\theta}^{2}
$$

where P_{θ} is the canonical momentum
(c) What are the eigenvalues of the Hamiltonian
(d) Write down the normalized position-space wave function $\psi_{k}(\theta)=<\theta \mid k>$ for the momentum eigenstates $P_{\theta}|k>=k| k>$ and show that only for k is an integer are allowed.
(e) The particle is now subjected to a constant magnetic field B inside the radius $r<d<R$ but no magnetic field outside $r>d$, with the vector potential is

$$
\vec{A}(x)= \begin{cases}\frac{B}{2}(-y \hat{i}+x \hat{j}) & \text { if } \mathrm{r}<\mathrm{d} \\ \frac{B d^{2}}{2 R^{2}}(-y \hat{i}+x \hat{j}) & \text { if } \mathrm{r}>\mathrm{r}\end{cases}
$$

write the new Hamiltonian, and show that energy eigenvalues are influenced by the magnetic field although the magnetic field is zero in the location of the particle
8. Consider a particle in three-dimensional space, whose state vector is $\mid \psi>$ and whose wave function is $\psi(r)=\langle r \mid \psi\rangle$. Let A be an observable which commutes with $\vec{L}=\vec{R} \times \vec{P}$, the orbital angular momentum of the particle. Assuming that A, L^{2} and L_{z} form a set of commuting observables let $\mid n, l, m>$ their common eigenkets, whose eigenvalues are, respectively, $a_{n}, l(l+1) \hbar^{2}$ and $m \hbar$ (the index n is assumed to be discrete).
Let $U(\phi)$ be the unitary operator defined by:

$$
U(\phi)=e^{\frac{-i L_{z} \phi}{\hbar}}
$$

where ϕ is a real dimensionless parameter. For an arbitrary operator K, we call $\tilde{\mathrm{K}}$ the transform of K by the unitary operator $U(\phi)$:

$$
\tilde{K}=U(\phi) K U^{\dagger}(\phi)
$$

(a) We set $L_{+}=L_{x}+i L_{y}, L_{-}=L_{x}-i L_{y}$. Calculate $\tilde{L_{+}} \mid n, l, m>$ and show that L_{+}and $\tilde{L_{+}}$are proportional; calculate the proportionality constant.
(b) Express L_{x} terms of $\tilde{L_{x}}, \tilde{L_{y}}$, and $\tilde{L_{z}}$, What geometrical transformation can be associated with the transformation of L into \tilde{L}

